A bipartite substrate recognition motif for cyclin-dependent kinases.

نویسندگان

  • D Y Takeda
  • J A Wohlschlegel
  • A Dutta
چکیده

Cy or RXL motifs have been previously shown to be cyclin binding motifs found in a wide range of cyclin-Cdk interacting proteins. We report the first kinetic analysis of the contribution of a Cy motif on a substrate to phosphorylation by cyclin-dependent kinases. For both cyclin A-Cdk2 and cyclin E-Cdk2 enzymes, the presence of a Cy motif decreased the K(m(peptide)) 75-120-fold while the k(cat) remained unchanged. The large effect of the Cy motif on the K(m(peptide)) suggests that the Cy motif and (S/T)PX(K/R) together constitute a bipartite substrate recognition sequence for cyclin-dependent kinases. Systematic changes in the length of the linker between the Cy motif and the phosphoacceptor serine suggest that both sites are engaged simultaneously to the cyclin and the Cdk, respectively, and eliminate a "bind and release" mechanism to increase the local concentration of the substrate. PS100, a peptide containing a Cy motif, acts as a competitive inhibitor of cyclin-Cdk complexes with a 15-fold lower K(i) for cyclin E-Cdk2 than for cyclin A-Cdk2. These results provide kinetic proof that a Cy motif located a minimal distance from the SPXK is essential for optimal phosphorylation by Cdks and suggest that small chemicals that mimic the Cy motif would be specific inhibitors of substrate recognition by cyclin-dependent kinases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclin-dependent kinases: inhibition and substrate recognition.

Four unresolved issues of cyclin-dependent kinase (CDK) regulation have been addressed by structural studies this year - the mechanism of CDK inhibition by members of the INK4 family of CDK inhibitors, consensus substrate sequence recognition by CDKs, the role of the cyclin subunit in substrate recognition and the structural mechanism underlying CDK inhibition by phosphorylation.

متن کامل

New structural insights into phosphorylation-free mechanism for full cyclin-dependent kinase (CDK)-cyclin activity and substrate recognition.

Pho85 is a versatile cyclin-dependent kinase (CDK) found in budding yeast that regulates a myriad of eukaryotic cellular functions in concert with 10 cyclins (called Pcls). Unlike cell cycle CDKs that require phosphorylation of a serine/threonine residue by a CDK-activating kinase (CAK) for full activation, Pho85 requires no phosphorylation despite the presence of an equivalent residue. The Pho...

متن کامل

Theoretical Study of Flavopiridol Binded to Transition Metals

More recently medical chemistry research has been focused on proteins that drive and controlcell cycle progression. Among them, the cyclin dependent kinases (cdk’s) are a group ofserine/threonine kinases, which rule the transition between successive stages of the cell cycle. Theactivity of cdk’s is regulated by multiple mechanisms, including binding to cyclins, which is a broadclass of positive...

متن کامل

The structure and substrate specificity of human Cdk12/Cyclin K

Phosphorylation of the RNA polymerase II C-terminal domain (CTD) by cyclin-dependent kinases is important for productive transcription. Here we determine the crystal structure of Cdk12/CycK and analyse its requirements for substrate recognition. Active Cdk12/CycK is arranged in an open conformation similar to that of Cdk9/CycT but different from those of cell cycle kinases. Cdk12 contains a C-t...

متن کامل

Structural Basis for Phosphodependent Substrate Selection and Orientation by the SCFCdc4 Ubiquitin Ligase

Cell cycle progression depends on precise elimination of cyclins and cyclin-dependent kinase (CDK) inhibitors by the ubiquitin system. Elimination of the CDK inhibitor Sic1 by the SCFCdc4 ubiquitin ligase at the onset of S phase requires phosphorylation of Sic1 on at least six of its nine Cdc4-phosphodegron (CPD) sites. A 2.7 A X-ray crystal structure of a Skp1-Cdc4 complex bound to a high-affi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 3  شماره 

صفحات  -

تاریخ انتشار 2001